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It is shown that the cosmological relativity theory predicts the value3 = 1.934×
10−35s−2 for the cosmological constant. This value of3 is in excellent agreement with
the measurements recently obtained by the High-Z Supernova Team and the Supernova
Cosmology Project.

1. INTRODUCTION

The problem of the cosmological constant and the vacuum energy asso-
ciated with it is of high interest these days. There are many questions related
to it at the quantum level, all of which are related to quantum gravity. Why
there exists the critical mass density and why the cosmological constant has
this value? Trying to answer these questions and others were recently the sub-
ject of many publications (Adler, 1997; Axenideset al., 2000; Carrollet al.,
1992; Carroll, 2000; Cohn, 1998; Estrada and Masperi, 1998; Fujii, 2000; Garriga
et al., 2000; Garriga and Vilenkin, 2000; Goliath and Ellis, 1999; Guendelman
and Kaganovich, 1998; Roos and Harun-or-Rashid, 1998; Rubakov and Tinyakov,
2000; Sahni and Starobinsky, 2000; Weinberg, 2000a,b; Witten, 2000; Zlatevet al.,
1999).

In this paper it is shown that the cosmological relativity theory (Behar and
Carmeli, 2000) predicts the value3 = 1.934× 10−35s−2 for the cosmological con-
stant. This value of3 is in excellent agreement with the measurements
recently obtained by the High-Z Supernova Team and the Supernova Cosmological
Project (Garnavichet al., 1998a,b; Perlmutteret al., 1997, 1998, 1999; Riesset al.,
1998; Schmidtet al., 1998).
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2. THE COSMOLOGICAL CONSTANT

In 1922 Friedmann solved the Einstein gravitational field equations and ob-
tained nonstatic cosmological solutions presenting an expanding universe
(Friedmann, 1922, 1924). Einstein, who thought at that time that the universe
should be static and unchanged forever, suggested a modification to his original
field equations by adding to them the so-called cosmological term that can stop
the expansion. The field equations with the added term are

Rµν − 1

2
gµνR+3gµν = κTµν , (1)

where3 is the cosmological constant, the value of which is supposed to be de-
termined experimentally. In Eq. (1),Rµν and R are the Ricci tensor and scalar,
respectively,κ = 8πG, whereG is Newton’s constant, and the speed of light is
taken as unity.

Soon after that Hubble (1927, 1936) found experimentally that the distant
galaxies are receding from us, and the farther the galaxy the bigger its velocity as
determined by its redshift.

After Hubble’s discovery that the universe is expanding, the role of the cos-
mological constant to allow static homogeneous solutions to Einstein’s equations
in the presence of matter, was looked upon as unnecessary. For a long time the
cosmological term was considered to be of no interest in cosmological physical
problems.

3. THE FRIEDMANN UNIVERSE

For a homogeneous and isotropic universe with the line element (Landau and
Lifshitz, 1979; Ohanian and Ruffini, 1994)

ds2 = dt2− a2(t)R2
0

[
dr2

1− kr2
+ r 2(dθ2+ sin2 θ dφ2)

]
, (2)

wherek is the curvature parameter (k = 1, 0,−1) anda(t) = R(t)/R0 is the scale
factor, with the energy–momentum tensor

Tµν = (ρ + p)uµuν − pgµν , (3)

Einstein’s equations (1) reduce to the two Friedmann equations

H2 ≡
(

ȧ

a

)2

= κ

3
ρ + 3

3
− k

a2R2
0

, (4)

ä

a
= −κ

6
(ρ + 3p)+ 3

3
. (5)
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In Eqs. (4) and (5),H is Hubble’s parameter,ρ is the mass density, andp is the
pressure. These equations admit a static solution (ȧ = 0) with k > 0 and3 > 0.

From the Friedmann equation (4) it then follows that for any value of the
Hubble parameterH there exists a critical mass densityρc = 3H2

0/κ at which the
spatial geometry is flat (k = 0). One usually measures the total mass density in
terms of the critical densityρc by means of the density parameterÄ = ρ/ρc.

In general, the mass densityρ includes contributions from various distinct
components. From the point of view of cosmology, the relevant aspect of each
component is how its contribution to the total energy density evolves as the universe
expands. A positive3 causes acceleration to the universe expansion, whereas
a negative3 and ordinary matter tend to decelerate it. Moreover, the relative
contributions of the components to the energy density change with time. ForÄ3 <
0, the universe will always recollapse to a Big Crunch. ForÄ3 > 0, the universe
will expand forever unless there is sufficient matter to cause recollapse beforeÄ3
becomes dynamically important. ForÄ3 = 0, we have the familiar situation in
which 0< ÄM ≤ 1 universes expand forever andÄM > 1 universes recollapse.
(For more details see Behar and Carmeli, 2000.)

4. THE SUPERNOVAE EXPERIMENTS

Recently two groups (the Supernova Cosmology Project and the High-Z
Supernova Team) presented evidence that the expansion of the universe is ac-
celerating (Garnavichet al., 1998a,b; Perlmutteret al., 1997, 1998, 1999; Riess
et al., 1998; Schmidtet al., 1998). These teams have measured the distances to
cosmological supernovae by using the fact that the intrinsic luminosity of Type Ia
supernovae is closely correlated to their decline rate from maximum brightness,
which can be independently measured. These measurements, combined with red-
shift data for the supernovae, led to the prediction of an accelerating universe. Both
teams obtained

ÄM ≈ 0.3, Ä3 ≈ 0.7, (6)

and strongly ruled out the traditional (ÄM,Ä3) = (1, 0) universe. This value of
the density parameterÄ3 corresponds to a cosmological constant that is small but,
nevertheless, nonzero and positive, that is,

3 ≈ 10−52m−2 ≈ 10−35s−2. (7)

5. THE COSMOLOGICAL RELATIVITY THEORY

In Behar and Carmeli (2000), a four-dimensional cosmological relativity the-
ory that unifies space and velocity was presented. The theory predicts that the
universe accelerates and hence it is equivalent to having a positive value for3 in
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it. As is well known, when a cosmological constant is added in the traditional work
of Friedmann, the field equations obtained are highly complicated and no solutions
have been obtained so far.

Cosmological relativity theory, on the other hand, yields exact solutions
and describes the universe as having a three-phase evolution, with a decelerating
expansion followed by a constant and an accelerating expansion, and it predicts
that the universe is now in the latter phase. In the framework of this theory, the
zero–zero component of Einstein’s equations is written as (Behar and Carmeli,
2000)

R0
0 −

1

2
δ0

0 R= κρeff = κ(ρ − ρc), (8)

whereρc = 3/κτ 2 ≈ 3H2
0/κ is the critical mass density andτ is Hubble’s time in

the zero-gravity limit.
Comparing Eq. (8) with the zero–zero component of Eq. (1), one obtains the

expression for the cosmological constant in cosmological relativity theory,

3 = κρc = 3/τ 2 ≈ 3H2
0 . (9)

Assuming that Hubble’s constantH0 = 70 km/s-Mpc, then

3 = 1.934× 10−35s−2. (10)

This result is in excellent agreement with the recent supernovae experimental
results.

6. CONCLUSIONS

We have seen how the cosmological constant can be determined in a natural
way without even adding it explicitly to the Einstein field equations. Rather, the
introduction of the effective mass densityρeff = ρ − ρc is enough to ensure that
the universe expands in the same way using Einstein’s field equations with a
cosmological constant. But there is a big difference now: The theory determines
the numerical value of the cosmological constant, and experiments confirm it.
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